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Abstract—Upon visible light irradiation, highly selective thiotelluration of isocyanides bearing an electron-withdrawing group like
nitro or trifluoromethyl group takes place smoothly by the use of a disulfide–ditelluride mixed system. The application of this pho-
toinduced reaction to radical cyclization of o-vinyl and o-allyl substituted phenylisocyanides successfully leads to the formation of
bisthiolated indole and quinoline derivatives, respectively, in moderate yields.
� 2007 Elsevier Ltd. All rights reserved.
Diphenyl ditelluride (PhTeTePh) has its absorption
maximum in visible region (kmax = 406 nm), and there-
fore, the irradiation with visible light causes homolytic
cleavage of the tellurium–tellurium single bond, generat-
ing the corresponding tellurium-centered radical. When
the visible-light irradiation is performed by co-existence
of unsaturated compounds in this system, radical addi-
tion of the ditelluride to the unsaturated compounds
may take place to give the corresponding bistelluration
products. However, examples of efficient bistelluration
of unsaturated compounds are extremely rare. In 1991,
we have found the visible-light-irradiated bistelluration
of alkynes with diphenyl ditelluride (Eq. 1).1
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The combination of the ditelluride and diphenyl disul-
fide leads to novel regioselective thiotelluration of alky-
nes, which can be attained based on the higher reactivity
of phenylthio radical (compared with phenyltelluro rad-
ical),2 and the higher carbon radical capturing ability of
diphenyl ditelluride (compared with diphenyl disulfide)3

(Eq. 2).4 On the other hand, the thiotelluration of al-
lenes using the (PhS)2–(PhTe)2 mixed system does not
proceed at all, and instead bisthiolation of allenes suc-
cessfully takes place to give the corresponding terminal
adducts regioselectively (Eq. 3).5 In this reaction, the
desired thiotelluration products are unstable under
photoirradiation conditions, and the following photoin-
duced reaction of the thiotelluration products with
(PhS)2 takes place to give the corresponding bisthiola-
tion products selectively. In the absence of (PhTe)2, a
complex mixture including small amounts of the bisthi-
olation product is obtained. In this Letter, we wish to re-
port a novel photoinduced introduction of chalcogen
functions into isocyanides, as C–N multiple bond com-
pounds, by using the (PhTe)2 single system and the
(PhS)2–(PhTe)2 mixed system.6,7

When the reaction of aromatic isocyanide8 (1,
0.25 mmol, 0.5 M) with equimolar amounts of diphenyl
ditelluride in CDCl3 was conducted for 24 h upon irra-
diation with a tungsten lamp through a filter (hm
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>400 nm), the desired 1,1-bistellurated product (2,
Ar = 2,6-xylyl or p-nitrophenyl) was not obtained at
all (Eq. 4).
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Under similar conditions, photoinduced bisselenation of
p-nitrophenyl isocyanide with diphenyl diselenide is
known to occur efficiently,9 and therefore, the bistellura-
tion product of isocyanides is most probably unstable
under visible light irradiation conditions.

As shown in Eq. 2, the binary system of disulfide and
ditelluride is useful for introducing both thio and telluro
groups into carbon–carbon triple bonds. Thus, we
examined similar photoinduced reactions of isocyanides
with (PhS)2 and (PhTe)2 (Eq. 5).10 Although usual
isocyanides such as 2,6-xylyl isocyanide (1a, 2,6-
Me2C6H3NC), p-methoxyphenyl isocyanide (1b, p-
MeO–C6H4NC), and benzylisocyanide (1c, PhCH2NC)
did not afford the corresponding thiotellurated product
at all, aryl isocyanides (1d, 1e, and 1f) bearing an elec-
tron-withdrawing group such as p-nitro, p-trifluorom-
ethyl, and p-cyano groups, underwent efficient
thiotelluration, providing the desired thiotelluration
products (3d, 3e, and 3f) successfully in good yields.11

Aryl isocyanide (1g and 1h) bearing weak electron-with-
drawing groups such as p-chloro and m-methoxy
groups, provided the corresponding products (3g and
3h) in moderate yields.
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Isocyanides, having an unsaturated bond at a suitable
position, are expected to undergo radical cyclization
reactions initiated by chalcogen-centered radicals. Thus,
we examined intramolecular cyclization reactions of o-
vinylphenyl isocyanides (1i) by using the (PhS)2–(PhTe)2

mixed system. When the reaction of an isocyanide (1i)
with 1.5 equiv of (PhS)2 and (PhTe)2 was conducted
under the photoirradiation conditions (hm >400 nm),
cyclization reaction occurs successfully, affording bisthi-
olated indole derivative (4i) in 50% yield (Eq. 6).12 Sim-
ilar conditions can be employed with methyl o-
isocyanocinnamate (1j), affording the corresponding
cyclization product (4j) in moderate yield.

In contrast, the use of diphenyl diselenide in place of the
ditelluride, resulted in the formation of a complex mix-
ture, which included the corresponding cyclic products
(6j and 7j) along with an acyclic product (5j) (Eq. 7).
Accordingly, the (PhS)2–(PhTe)2 mixed system is supe-
rior to the (PhS)2–(PhSe)2 mixed system for this radical
cyclization reactions of o-alkenyl isocyanides.
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A possible pathway may include the following (see
Scheme 1): (i) upon visible light irradiation, compropor-
tionation of (PhS)2 and (PhTe)2 takes place to form
PhSTePh,13–15 which undergoes photoinduced homo-
lytic cleavage, generating PhS�; (ii) PhS� adds to the iso-
cyano group of 1i selectively, forming an imidoyl radical
intermediate (8i); (iii) 8i cyclizes in the 5-exo manner to
give the radical intermediate bearing a five-membered
ring (9i); (iv) 9i undergoes SH2 reaction with (PhTe)2,
which bears the excellent carbon radical capturing abil-
ity. The formed thioltellurated product (10i) isomerizes
to more stable indole derivative (11i); (v) homolytic
dissociation of the phenyltelluro group of 11i under
the photoirradiation conditions generates a radical
intermediate (12i) and PhTe�;16,17 (vi) SH2 reaction of
12i with PhSTePh forms a bisthiolated indole derivative
(4i).

When 2-allylphenyl isocyanide (1k) was used as the sub-
strate, the 6-exo radical cyclization reaction takes place
successfully by using (PhS)2–(PhTe)2 or (PhS)2–(PhSe)2

mixed systems. The photoinduced reaction of 1k with
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Scheme 1. A possible pathway for the bisthiolative cyclization.
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(PhS)2 and (PhTe)2 under several conditions gave the
corresponding 6-exo radical cyclization products (13k
and 14k), but no 1,1-thiotellulated adduct (3k) was ob-
tained (Eq. 8). To get the desired bisthiolated cyclic
product (14k) selectively, higher concentration of disul-
fide is favorable. On the other hand, in the case using the
(PhS)2–(PhSe)2 mixed system, 1,1-thioselenated adduct
(5k) was obtained mainly along with cyclic product
(13k) (Eq. 8).18
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In the reaction of this (PhS)2–(PhTe)2 mixed system, a
quinoline (17k) was obtained as an initial product upon
photoirradiation for 5 h (Scheme 2). Therefore, a possi-
ble mechanistic pathway may include the following: (i)
the imidoyl radical intermediate (8k), which is formed
by the addition of PhS� to 1 k, cyclizes in the 6-exo man-
ner to give the six-membered cyclic radical intermediate
(15k); (ii) 15k undergoes SH2 reaction with (PhTe)2 to
provide a thiotellurated quinoline (16k); (iii) an elimina-
tion of PhTeH from 16k gives 17k;19 (iv) PhS� attacks
17k to provide a radical intermediate (18k), and then
18k is trapped by (PhTe)2, yielding the cyclic product
(19k); (v) an elimination of PhTeH from 19k affords
14k. On the other hand, the isomerization of 17k pro-
duces the cyclic product (13k).
In summary, we have disclosed the characteristic fea-
tures of diphenyl ditelluride in the photoinduced reac-
tion with isocyanides. Although the ditelluride itself
does not add to isocyanides, the combination with di-
phenyl disulfide successfully leads to the desired thiotell-
uration products of aromatic isocyanides bearing
electron-withdrawing groups. Moreover, the present
(PhS)2–(PhTe)2 mixed system is useful for radical cycli-
zation of o-alkenylphenyl isocyanides.
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(m, 4H), 7.51 (ddd, J = 1.5, 6.8, 8.3 Hz, 1H), 7.59–7.63 (m,
2H), 7.66 (d, J = 7.8 Hz, 1H), 7.72 (d, J = 8.3 Hz, 1H),
7.78 (s, 1H); 13C NMR (68 MHz, CDCl3) d 19.0, 125.6,
126.6, 126.8, 128.3 (2 C), 128.5, 128.8, 129.7, 130.8, 134.5,
135.1, 146.8, 159.1; IR (NaCl) 3059, 1600, 1389, 1132,
1039, 687 cm�1; MS (EI) m/z 251 (M+, 58); HRMS Calcd
for C16H13NS: 251.0769, found: 251.0763.
2-Phenylthio-3-(phenylthiomethyl)quinoline (14k): yellow
oil; 1H NMR (270 MHz, CDCl3) d 4.34 (s, 2H), 7.17–7.28
(m, 4H), 7.32–7.43 (m, 6H), 7.54 (ddd, J = 1.5, 6.8, 8.3 Hz,
1H), 7.60 (d, J = 7.3 Hz, 2H), 7.73 (d, J = 8.3 Hz, 1H),
7.81 (s, 1H); 13C NMR (68 MHz, CDCl3) d 36.3, 125.9,
126.4, 126.9, 127.2, 128.3 (2 C), 128.9, 129.0, 129.3, 130.7,
131.0, 134.4, 135.4, 135.5, 147.3, 158.2; IR (NaCl) 3057,
1593, 1582, 1478, 1438, 1134, 1040, 1024, 746, 689 cm�1;
MS (EI) m/z 359 (M+, 76); HRMS Calcd for C22H17NS2:
359.0802, found: 359.0813.

19. Several attempts of detection of benzenetellurol failed,
owing to its instability. However, the formation of
diphenyl monotelluride and benzenethiol suggests the
possibility of the generation of PhTeH.
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